
Quickscope
Release 0.1.0

Nicholas Lambourne, Max Miller & Ella de Lore

Jul 07, 2021

CONTENTS:

1 Overview 3
1.1 Key Features . 3
1.2 Build and Run . 4
1.3 Documentation . 5
1.4 Copyright & License . 5

2 Indices and tables 37

Python Module Index 39

Index 41

i

ii

Quickscope, Release 0.1.0

CONTENTS: 1

https://github.com/UQTools/quickscope/blob/master/LICENSE
https://badgen.net/badge/Python/3.8/blue
https://github.com/UQTools/quickscope/actions
https://quickscope.readthedocs.io/

Quickscope, Release 0.1.0

2 CONTENTS:

CHAPTER

ONE

OVERVIEW

Quickscope is used to build Gradescope autograders with Chalkbox, the University of Queensland ITEE school’s
automatic marking system for programming assignments.

Quickscope is hosted at quickscope.uqcloud.net for public consumption.

1.1 Key Features

• Support for Python and Java based programming assessment.

• Extensible engine system for introducing new languages and environments.

• Dependency and environment management with Poetry.

• A friendly web interface:

3

https://www.gradescope.com/
https://github.com/uqtools/chalkbox
https://quickscope.uqcloud.net
https://python-poetry.org/

Quickscope, Release 0.1.0

1.2 Build and Run

Quickscope requires the Poetry dependency and environment management system as well as Python 3.8. If you don’t
have Poetry installed run:

pip install poetry

If you don’t have Python 3.8 we’d suggest using the pyenv management system to install it:

pyenv install 3.8.2

Once you have those, you can install Quickscope:

git clone https://github.com/UQTools/quickscope
cd quickscope
poetry shell
poetry install
poetry run build

When the generation of the front end is complete you can run the Quickscope server:

4 Chapter 1. Overview

https://github.com/UQTools/quickscope/blob/master/docs/_static/images/quickscope_interface.png?raw=true
https://github.com/pyenv/pyenv

Quickscope, Release 0.1.0

poetry run flask run

You should now be able to access the service through your browser at 0.0.0.0:5000.

1.3 Documentation

Documentation for the project is available at quickscope.readthedocs.org. This includes guides on how to use the tool
and adapt it to your needs.

1.4 Copyright & License

Quickscope is copyright Nicholas Lambourne, Max Miller & Ella de Lore.

The Quickscope logo is copyright Nicholas Lambourne.

This tool has been licensed for general use under a permissive MIT license available here.

1.4.1 Guides

Guides for students, tutors and course coordinators using Quickscope.

Creating a JavaEngine Autograder

This guide explains the process of configuring and generating an autograder bundle in Quickscope, using the Java
Engine for ChalkBox.

Generic Setup

1. Visit http://quickscope.uqcloud.net and log in with your UQ credentials.

2. Choose a course code and assignment identifier for the autograder. These will be displayed in the instructor-
facing output for debugging purposes each time the autograder runs.

3. Choose the JavaEngine under the ‘Engine’ dropdown box. A set of engine-specific options will appear below.

1.3. Documentation 5

https://quickscope.readthedocs.org
http://quickscope.uqcloud.net

Quickscope, Release 0.1.0

Java Engine Configuration

Here, you can select the individual stages to be run as part of the autograder. All stages are optional and can be run
separately or together with one or more other stages. Selecting the checkbox next to the name of a stage will enable
it, and any stage-specific options will appear below.

Each stage has a weighting, which can be changed by entering a number in the associated text field. This represents
the total number of marks, out of 100, allocated to this stage. A submission that scores perfectly in a given stage will
receive the number of marks entered here. If a weighting is 0, the stage will still be run, however no marks will be
allocated to it.

Immediately below the options for each stage are file drop zones for dependency libraries and the correct solution
directory, explained below.

6 Chapter 1. Overview

../_static/images/generic_setup.png

Quickscope, Release 0.1.0

Dependencies

Any dependency JARs that are required by the assignment should be added here, for example, JUnit and Hamcrest. If
the Checkstyle stage is enabled, the Checkstyle JAR should be added here as well.

1.4. Copyright & License 7

../_static//images/javaengine_config.png
../_static//images/dependencies.png

Quickscope, Release 0.1.0

Correct Solution

The directory containing the assignment solution should be dragged here. This directory should contain the two
directories src and test, along with any extra text files provided by course staff for the purposes of testing I/O-
related classes. For example, if the directory to be added to Quickscope is called correct, the structure should
be:

correct
saves

example.txt
src

tms
display

SimpleDisplay.java
intersection

Intersection.java
route

Route.java
| ... more files

test
tms

intersection
IntersectionTest.java

route
RouteTest.java

... more files

The correct solution directory should contain all the solution code for the assignment inside src/, as well as all the
tests to be run against the student submission (if the functionality stage is enabled) in test/.

Test Visibility

To provide immediate feedback to students on submission, a subset of the uploaded JUnit tests in the test/ directory
can be marked as visible at the time of student submission, rather than the default of only after the grades have been
published/finalised for the assignment. Immediately visible tests will appear in the results section when a student
makes a submission, along with the mark received for that test and the test output if it failed.

To mark an individual JUnit test as visible, use the @Deprecated annotation. For example:

@Test
@Deprecated
public void toStringTest() {

assertEquals("A", intersection1.toString());
}

8 Chapter 1. Overview

Quickscope, Release 0.1.0

Test Weightings

Weightings can be used to allocate more marks to a particular unit test where it is deemed necessary.

The weighting of each individual JUnit test can be modified by adding the timeout parameter to the @Test anno-
tation. Weightings are integers between one and nine inclusive, representing a weighting of one and nine times the
regular test weighting respectively.

When including the timeout parameter of a test to specify a weighting, it is recommended to add a sufficiently large
value such that the test does not actually time out for the given weighting, such as one million milliseconds.

For example, to give a test a weighting of three times the regular weighting:

@Test(timeout = 1000000 + 3)
public void hashCodeTest() {

assertEquals(a.hashCode(), b.hashCode());
}

Note that the recommended approach to adding timeouts to tests is to use a class-wide timeout rule as shown below.

public class MyTest {
@Rule
public Timeout timeout = Timeout.seconds(1);

...

Conformance

After enabling the conformance stage by clicking the checkbox under Java Engine Configuration, the violation penalty
can be changed by entering a number in the input field. This number represents the number of marks deducted for
each instance of non-conformance to the expected public API found in the correct solution. The total of all deductions
is capped at the weighting assigned to the stage, meaning students cannot receive a negative mark.

A file drop zone is provided for specifying the expected file structure of a student submission. This should generally
be similar to the correct solution directory, however, only the tests classes that are assessable should be present. This
is to avoid extra test classes being marked as ‘missing’ in the conformance check.

For example, if the directory to be added to Quickscope is called correct_structure and the assessable test
classes are IntersectionTest and DemoPressurePadTest, the structure should be:

correct_structure
saves

example.txt
src

tms
display

SimpleDisplay.java
intersection

Intersection.java
route

Route.java
| ... more source files

test
tms

intersection
IntersectionTest.java

(continues on next page)

1.4. Copyright & License 9

Quickscope, Release 0.1.0

(continued from previous page)

sensors
DemoPressurePadTest.java

JUnit

The JUnit classes that are assessable in the assignment should be selected by clicking on the rounded boxes represent-
ing files under the “Preview:” section below the correct solution drop zone.

Once a file has been selected, it will appear in the list of Assessable Test Classes. To remove a file from the list, simply
click its rounded box again.

Below the list of assessable test classes, there is a file drop zone for uploading a directory containing a set of faulty
solutions to the assignment, used when assessing submitted JUnit tests. The correct implementation of the assignment
should also be included in this directory, under solution/.

As a suggestion, each subdirectory should be named according to the test class it is assessing. For example, pp for
DemoPressurePadTest. These subdirectories should act as the src/ directory for each solution, with packages
as immediate subdirectories.

For example, if the directory to be added to Quickscope is called faulty, the structure should be:

faulty
pp_getCongestion_calc

README.txt
tms

display
SimpleDisplay.java

intersection
Intersection.java

route
Route.java

... more source files
... more faulty solutions
solution

tms
display

SimpleDisplay.java
intersection

Intersection.java
route

(continues on next page)

10 Chapter 1. Overview

../_static/images/junit.png

Quickscope, Release 0.1.0

(continued from previous page)

Route.java
... more source files

Checkstyle

After enabling the Checkstyle stage by clicking the checkbox under Java Engine Configuration, the violation penalty
can be changed by entering a number in the input field. This number represents the number of marks deducted for
each style violation detected by the Checkstyle tool when run on the src/ directory of the submitted assignment.

A text input field is provided for specifying paths that should be excluded from being checked for style violations
by the Checkstyle tool. Excluded paths can be directories (using a trailing slash) or individual files. If a directory
is specified, the entire directory will be ignored when checking for style violations. This functionality can be useful
when the assignment contains code provided by course staff that is not compliant with the style guide, for example, a
package containing GUI-related code.

To add an excluded path, enter the path in the input field, ensuring the path is relative to the root directory of the
submission, /autograder/submission/. Then, click the “+” button inside the input field. The path will display
under “Excluded Paths”.

A file drop zone is provided to specify the configuration file to be used by the Checkstyle tool. This is an .xml file
containing a list of all violation types to detect, and any associated options.

1.4. Copyright & License 11

Quickscope, Release 0.1.0

Generating and Uploading Autograder

Finally, once all stages have been configured, the autograder is ready to be generated. Simply click the “Generate
Autograder Bundle” button at the bottom of the page, and a .zip file containing the entire autograder suite will be
downloaded automatically. This file can then be uploaded to Gradescope.

12 Chapter 1. Overview

../_static/images/checkstyle.png

Quickscope, Release 0.1.0

Creating a PythonEngine Autograder

This guide explains the process of configuring and generating an autograder bundle in Quickscope, using the Python
Engine for ChalkBox.

Generic Setup

1. Visit http://quickscope.uqcloud.net and log in with your UQ credentials.

2. Choose a course code and assignment identifier for the autograder. These will be displayed in the instructor-
facing output for debugging purposes each time the autograder runs.

3. Choose the PythonEngine under the ‘Engine’ dropdown box. A set of engine-specific options will appear below.

Python Engine Configuration

Here you will be required to provide the needed files for the engine.

You will first have to provide the expected name of the student submitted file (e.g a1) and the name of test script (e.g
test_a1.py).

1.4. Copyright & License 13

http://quickscope.uqcloud.net
../_static/images/quickscope-python-generic.png

Quickscope, Release 0.1.0

Included Folder

You will need to provide a folder of included files to Quickscope containing:

• The test script and dependencies (e.g. for CSSE1001, test_a1.py and testrunner.py)

• Support files for testing (e.g. config files)

• Support files for student code (any files that have been provided to students as support code)

This is an example of an included folder for CSSE1001, using the 2019 assignment 1:

14 Chapter 1. Overview

../_static/images/quickscope-python-text.png

Quickscope, Release 0.1.0

included

test_data

main_fixed_win.in

main_fixed_win.out

... more files

a1_test.py

testrunner.py

a1_support.py

WORDS_ARBITRARY.txt

WORDS_FIXED.txt

Visible Tests

You will need to provide a text file that contains the names of test classes that will be available to students before the
due date. The results from the tests named in the file will be visible to students each time they upload a submission to
Gradescope.

JSON Formatter

You will need to provide a Python script that reformats the test runner output to be in a format accepted by Gradescope.

A JSON Formatter for the current CSSE1001 Test Runner can be found on GitHub.

Generating and Uploading Autograder

Finally, once all stages have been configured, the autograder is ready to be generated. Simply click the “Generate
Autograder Bundle” button at the bottom of the page, and a .zip file containing the entire autograder suite will be
downloaded automatically. This file can then be uploaded to Gradescope.

Setting up an Assignment in Gradescope

This guide explains the process of creating a programming assignment in Gradescope, using an autograder generated
by Quickscope.

1.4. Copyright & License 15

{[}https://github.com/UQTools/chalkbox/blob/master/test/resources/csse1001/included/gradescopeJSONFormatter.py

Quickscope, Release 0.1.0

Creating the Assignment

Firstly, follow the steps outlined in Gradescope’s demonstration video below to create a programming assignment
using the Gradescope interface.

Assignment Settings

The following options should be set in the “Assignment Settings” panel when creating the assignment:

• Autograder points should be set to the total of the weights of all the automatically marked components of the
assignment. This number should be the maximum possible number of marks achievable in the autograder.

– For JavaEngine, this will be the sum of all the weights assigned to the JavaEngine stages.

– For PythonEngine, this will be the maximum achievable functionality score, excluding the manually
marked style component.

• “Enable Manual Grading” should be enabled if there is to be a manually marked style component

• “Due Date” should be set to the official due date of the assignment. Submissions made after this date but before
the Late Due Date will be marked as “Late” when marking, along with the number of days it is late.

• “Allow late submissions” should be enabled.

• “Late Due Date” should be set to the last expected submission date of the longest extension that is allowed for
the assignment. Students will not be allowed to submit after this date. Course staff can still submit on behalf of

16 Chapter 1. Overview

https://www.youtube.com/watch?v=RxZxBeIp3sc

Quickscope, Release 0.1.0

students, though students cannot see their autograder results on submission.

Outline

In the “Outline” section, an additional question should be created for the manual style component, including the
weighting assigned to manual style.

Autograder

Finally, the autograder .zip generated by Quickscope should be uploaded on this page by selecting “Zip file upload”,
“Select Autograder (.zip)” then “Update Autograder”.

After uploading the autograder, you can test that it works correctly by clicking “Test Autograder” and uploading a
student submission, for example, the correct solution for the assignment written by course staff.

1.4. Copyright & License 17

../_static/images/outline.png

Quickscope, Release 0.1.0

Other Settings

By clicking the “Settings” link at the bottom of the left sidebar after entering the assignment page, other various
settings can be enabled that are not present in the “Assignment Settings” panel shown when creating the assignment.
Key changes that can be made here include:

• Specifying which submission methods are allowed. Submission via direct file upload, GitHub and Bitbucket
can be enabled or disabled.

• Specifying ignored files. Files that match these conditions will be filtered out from a student’s submission before
being processed with ChalkBox. This may be useful if ChalkBox is having problems with certain types of files.

• Changing the autograder container’s system specifications. More CPU and RAM may improve performance.

• Changing the autograder timeout. The default timeout is 10 minutes before an autograder instance is killed,
however this can be increased up to 40 minutes.

18 Chapter 1. Overview

../_static/images/autograder.png

Quickscope, Release 0.1.0

Style Marking in Gradescope

This guide covers the process of style marking student assignments in Gradescope.

1.4. Copyright & License 19

../_static/images/gradescope-setup_other_settings.png

Quickscope, Release 0.1.0

Navigating to Marking Screen

In each course, assignments can be found under the Assignments tab.

This shows all the current assignments for the course.

To mark a specific assignment, click on its name in the list.

Then select Grade Submissions in the left-hand menu to navigate to the questions in the assignment.

For this assignment, style marking is graded under one question, in this case, “Manual style”.

Selecting the name of the question will take you to a list of the names of students.

20 Chapter 1. Overview

../_static/images/gradescope_assignments.png
../_static/images/gradescope_assignment_questions.png

Quickscope, Release 0.1.0

Marking

The Gradescope marking interface uses a number of shortcut to assist with marking. Please watch the following videos
to learn about the interface and these shortcuts.

1.4. Copyright & License 21

https://www.youtube.com/watch?v=12ySmTBH3pY

Quickscope, Release 0.1.0

Commenting

Comments can be added to student code by clicking on a section of student code. A comment box will then appear
where you can add your comment and then save.

22 Chapter 1. Overview

https://www.youtube.com/watch?v=VMM16gdREfg

Quickscope, Release 0.1.0

The student will be able to view comments linked to the code that you clicked on.

Shortcuts

• 1 - 9 - Select Rubric Group

• QWERTY - Select Rubric Item

• Left Arrow - Previous Student

• Right Arrow - Next Student

• z - Next Ungraded

• a - Show all submissions

• . - Next Question

• , - Previous Question

Understanding Gradescope Feedback CSSE2002

When you have submitted your assignment to Gradescope, you will receive feedback on you work. If you submit
before the due date you will receive some “pre-checks” on you assigment. Full feedback will be available at the time
of grade release.

1.4. Copyright & License 23

../_static/images/gradescope_comment_box.png

Quickscope, Release 0.1.0

Before Due Date

Before the due date of the assignment, submitting your assignment to Gradescope will allow you to receive “pre-
checks” on your submitted code.

These checks are:

• Compilation - checks if your program compiles, if not, give the compilation error output explaining why your
code failed to compile.

• Conformance - checks if your program conforms to the provided specification.

• Functionality - a small number of selected functionality tests may be provided for you to see the functionality
of your program. These tests are a subset of the full suite of tests used to mark your assignment’s functionality.

24 Chapter 1. Overview

../_static/images/gradescope-student-precheck-view.png
../_static/images/gradescope-student-precheck-compilation.png
../_static/images/gradescope-student-precheck-conformance.png

Quickscope, Release 0.1.0

• JUnit Test Compilation - checks if your provided JUnit tests compile with our solution. If your tests do not
compile with our solution then you will receive 0 marks for the JUnit section of the assignment

• Style - automatically checks your program for style violations. These violations will be deducted from your
total style marks.

1.4. Copyright & License 25

../_static/images/gradescope-student-precheck-functionality.png
../_static/images/gradescope-student-precheck-junit.png
../_static/images/gradescope-student-precheck-style.png

Quickscope, Release 0.1.0

Assignment Feedback

When the assignment grades are published you will be able to view you final grades and feedback. The screen will be
similar to the feedback explained above, except there will be three main differences.

• Full Functionality - You will be able to see the results from all the functionality tests for the assignment and
whether you passed or failed each test.

• JUnit Results - You will be able to see the results from your tests. Your tests are run against the solution to the
assignment and a number of faulty solutions. Your mark is determined by the number of faulty solutions that
pass fewer of your tests than are passed by the actual solution. The name in parentheses tells you which of your
test classes that faulty solution was accessing, along with a brief identifier for the faulty solution.

• Style Feedback - You can view your full style feedback by navigating to the “Code” tab on the results page.

26 Chapter 1. Overview

../_static/images/gradescope-student-final-view.png
../_static/images/gradescope-student-final-junit.png

Quickscope, Release 0.1.0

This will show you your manual style grade. To see detailed feedback, click on the question name in green
(in this case, “Manual Style”) which will expand to show the grading rubric and deductions. Files with
comments will have a speech box containing the number of comments in that file. To view the comments,
click on the file name to expand it.

1.4. Copyright & License 27

../_static/images/gradescope-student-final-navigation.png
../_static/images/gradescope-student-final-style.png

Quickscope, Release 0.1.0

Submitting to Gradescope

Using Gradescope you are able to submit files either by uploading them or through a GitHub repository.

To find the submission portal for Gradescope you will need to navigate to the dashboard for the subject where you will
see a list of assignments.

By clicking on the assignment you wish to submit, the submission portal will appear.

28 Chapter 1. Overview

../_static/images/gradescope-submission-dashboard.png

Quickscope, Release 0.1.0

File Upload

If you wish to upload a file, select the upload radio button and either drag the file from your computer or click on the
drag & drop square to open a file explorer.

CSSE2002

If you are submitting a file structure with directories you will need to zip them to preserve the structure.

Specifically for CSSE2002 you will need to zip your top level folders (src, test etc) together. In the below example
you wouldn’t compress a1, you need to select all of the sub folders of a1 (in this case src and test) and then compress
them together.

a1
src

(continues on next page)

1.4. Copyright & License 29

../_static/images/gradescope-submission-portal.png

Quickscope, Release 0.1.0

(continued from previous page)

tms
display

... files
intersection

... files
route

... files
sensors

... files
util

... files
test

tms
intersection

IntersectionTest.java
sensors

DemoPressurePadTest.java

GitHub

If you wish to submit an assignment that is in a GitHub repo you will need to select the GitHub radio button.

You will then be prompted to connect your GitHub account to Gradescope.

30 Chapter 1. Overview

../_static/images/gradescope-submission-connect.png

Quickscope, Release 0.1.0

You will then be prompted to select the repository and branch of the assignment you wish to submit.

Submission

Once you have selected your options and clicked the Upload button, you will be taken to the results page. The results
will not appear instantly as there may be some processing time. If your course has pre submission feedback you will
be able to see it there.

1.4. Copyright & License 31

../_static/images/gradescope-submission-gitHubg.png

Quickscope, Release 0.1.0

1.4.2 Quickscope API

Details of the Quickscope API class, functions and methods.

quickscope

quickscope package

Subpackages

quickscope.server package

Submodules

quickscope.server.bundle module

quickscope.server.bundle.copy_testrunner(bundle_directory)
PythonEngine specific. Copies the testrunner.py testing utility package from ../templates into the included di-
rectory in the bundle.

Parameters bundle_directory (Path) – the temporary directory where the bundle is being
created

Return type None

quickscope.server.bundle.get_chalkbox(version, bundle_directory)
Procures the specified version of ChalkBox from GitHub releases.

Parameters

• version (str) – the version of ChalkBox to get (e.g. v0.2.0)

• bundle_directory (Path) – the path to the temporary directory in which the bundle
is constructed

Return type Path

Returns the path to the ChalkBox JAR in the temporary bundle directory.

quickscope.server.bundle.get_dependencies(dependency_directory)
Creates a list of dependencies based on the contents of the dependency directory.

Parameters dependency_directory (Path) – where the dependencies uploaded by the user
are stored

Return type List[str]

Returns a list of the dependencies’ paths (including the dependency directory)

quickscope.server.bundle.produce_bundle(config)
Performs bundle construction from the various elements based on the Engine and configuration specified.

Parameters config (Dict[str, Any]) – the configuration dictionary as prepared by .tem-
plates.populate_config

Return type str

Returns the path to the zipped bundle as a string

32 Chapter 1. Overview

Quickscope, Release 0.1.0

quickscope.server.bundle.produce_config_file(form, bundle_directory)
Takes the form from the React front-end and uses it, in combination with the engine default settings, to populate
the configuration and write it to the config.yaml file in the bundle directory.

Parameters

• form (Dict[str, Any]) – the immutable form dictionary from the request object popu-
lated by the React front-end

• bundle_directory (Path) – the temporary directory where the bundle is being created

Return type None

quickscope.server.bundle.produce_included_directory(source, bundle_directory)
PythonEngine specific. Copies the entire ‘included’ directory with its uploaded components into the root of the
bundle.

Parameters

• source (Path) – the original location of the included directory as uploaded by the user

• bundle_directory (Path) – the temporary directory where the bundle is being created

Return type None

quickscope.server.bundle.produce_lib_directory(lib_directory, bundle_directory)
JavaEngine specific. Gathers the lib file containing JAR dependencies and copies it to the temporary bundle
directory.

Parameters

• lib_directory (Path) – the lib directory with JAR dependencies uploaded by the user

• bundle_directory (Path) – the temporary directory where the bundle is being created

Return type None

quickscope.server.bundle.produce_resources_directory(resources_directory, bun-
dle_directory)

JavaEngine specific. Gathers the static resources directory and files uploaded by the user and copies them to the
temporary bundle directory.

Parameters

• resources_directory (Path) – the static resources directory populated by the user’s
uploads

• bundle_directory (Path) – the temporary directory where the bundle is being created

Return type None

quickscope.server.bundle.produce_run_script(run_call, bundle_directory=None)
Creates the run.sh script in the root of the bundle that is used by Gradescope to start the autograding process.

Parameters

• run_call (str) – typically the call to start ChalkBox with whatever arguments are re-
quired

• bundle_directory (Optional[Path]) – the temporary directory where the bundle
is being created

Return type None

quickscope.server.bundle.produce_setup_script(setup_calls, bundle_directory)
Creates the setup.sh script - required by Gradescope to prepare the Ubuntu environment - and places it in the
bundle.

1.4. Copyright & License 33

Quickscope, Release 0.1.0

Parameters

• setup_calls (str) – the calls made to e.g. install packages, set the PATH etc. These
come from .templates.py

• bundle_directory (Path) – the temporary directory where the bundle is being created

Return type None

quickscope.server.bundle.produce_solution_directory(solution_directory, bun-
dle_directory)

Copies the solution directory uploaded by the user to the temporary bundle directory.

Parameters

• solution_directory (Path) – the directory containing the correct and faulty solu-
tions uploaded by the user

• bundle_directory (Path) – the temporary directory where the bundle is being created

Return type None

quickscope.server.bundle.reformat_test_classes(config, session_directory)
JavaEngine specific. Transforms the assessable test classes listed in the config from Java import style (e.g.
chalkbox.import.style) to path style (e.g. chalkbox/import/style.java).

Parameters

• config (Dict[str, Any]) – the config dictionary containing the test classes to update

• session_directory (Path) – the directory associated with the user’s session where
the user’s uploads are stored

Return type None

quickscope.server.config module

class quickscope.server.config.Config
Bases: object

Configuration class for the quickscope Flask application.

DEBUG = True

TESTING = True

UPLOAD_FOLDER = 'state'

quickscope.server.routes module

quickscope.server.routes.generate()
Generates the bundle based on the uploaded files and the configuration settings passed through in the form.

Return type Response

Returns a response that downloads the generated bundle to the client machine

quickscope.server.routes.home()
Serve the React front end bundle.

Return type str

Returns the rendered template of the React index.html page

34 Chapter 1. Overview

Quickscope, Release 0.1.0

quickscope.server.routes.upload_locations(component)
Uploads a file to the correct location in the appropriate state directory (based on the session id and the component
type).

Parameters component (str) – the component of the bundle that is being uploaded, this will
determine the subdirectory in the state directory based on the engine

Return type Response

Returns a response object indicating success or failure

quickscope.server.run module

Utility class for running Quickscope

quickscope.server.templates module

quickscope.server.templates.populate_config(config, form, session_directory, locations)
Takes the user-provided configuration settings from the form and uses them to update the default values for the
specified engine. User settings will override defaults.

Parameters

• config (Dict[str, Any]) – the basic settings common to all configurations: course code,
assignment ID, engine, and session directory

• form (Any) – the form (immutable dictionary) attached to the Flask request containing the
user-specified settings

• session_directory (Path) – the path to the directory associated with the user session
matching the session ID created by the React front-end

• locations (Dict[str, str]) – the mapping from required components to their respec-
tive location in the bundle (e.g. PYTHON_LOCATIONS or JAVA_LOCATIONS, above)

Return type Dict[str, Any]

Returns the compiled configuration dictionary

quickscope.server.utils module

quickscope.server.utils.collapse_path_overlap(clean_file, component, locations)
Removes the risk of creating duplicated folders in the state directory by checking if the clean_file has any
directory overlap with the component location e.g. /solutions/correct/ and correct/a1.py would ensure that a1.py
was put in /solutions/correct/a1.py and not /solutions/correct/correct/a1.py.

Parameters

• clean_file (str) – the uploaded file cleaned of any leading forward slashes

• component (str) – the particular component being uploaded

• locations (Dict[str, str]) – the set of upload locations specific to the engine associ-
ated with the session

Return type str

Returns the collapsed path as a string

1.4. Copyright & License 35

Quickscope, Release 0.1.0

quickscope.server.utils.deep_update(original, updates)
Update a nested dictionary with new values, leaving unupdated values in place. Modifies original in place.

Parameters

• original (Dict) – the dictionary whose values will be updated

• updates (Mapping) – the dictionary with the values to you want to insert into original

Return type Dict

quickscope.server.utils.make_session(session_id)
Creates a session directory with the given session_id if it does not already exist.

Parameters session_id (str) – the session ID generated by the React front-end whenever the
page is loaded or reloaded.

Return type Path

Returns the path object corresponding to the session_id, which now must exist.

quickscope.server.utils.reconstruct(session_id, component, files, locations)
Finds the appropriate directory for uploaded file(s) and saves them there.

Parameters

• session_id (str) – the session ID provided by the React front end

• component (str) – the type of component being uploaded (e.g. linter config file)

• files – the files from the Flask request

• locations (Dict[str, str]) – the locations associated with the components that make
up the engine selection

Return type None

Module contents

Submodules

quickscope.build module

quickscope.build.build()
Installs front-end dependencies and builds the front-end using yarn, which must already be installed.

Return type None

quickscope.wsgi module

Module contents

36 Chapter 1. Overview

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

37

Quickscope, Release 0.1.0

38 Chapter 2. Indices and tables

PYTHON MODULE INDEX

q
quickscope, 36
quickscope.build, 36
quickscope.server, 36
quickscope.server.bundle, 32
quickscope.server.config, 34
quickscope.server.routes, 34
quickscope.server.run, 35
quickscope.server.templates, 35
quickscope.server.utils, 35
quickscope.wsgi, 36

39

Quickscope, Release 0.1.0

40 Python Module Index

INDEX

B
build() (in module quickscope.build), 36

C
collapse_path_overlap() (in module

quickscope.server.utils), 35
Config (class in quickscope.server.config), 34
copy_testrunner() (in module

quickscope.server.bundle), 32

D
DEBUG (quickscope.server.config.Config attribute), 34
deep_update() (in module quickscope.server.utils),

35

G
generate() (in module quickscope.server.routes), 34
get_chalkbox() (in module

quickscope.server.bundle), 32
get_dependencies() (in module

quickscope.server.bundle), 32

H
home() (in module quickscope.server.routes), 34

M
make_session() (in module quickscope.server.utils),

36
module

quickscope, 36
quickscope.build, 36
quickscope.server, 36
quickscope.server.bundle, 32
quickscope.server.config, 34
quickscope.server.routes, 34
quickscope.server.run, 35
quickscope.server.templates, 35
quickscope.server.utils, 35
quickscope.wsgi, 36

P
populate_config() (in module

quickscope.server.templates), 35
produce_bundle() (in module

quickscope.server.bundle), 32
produce_config_file() (in module

quickscope.server.bundle), 32
produce_included_directory() (in module

quickscope.server.bundle), 33
produce_lib_directory() (in module

quickscope.server.bundle), 33
produce_resources_directory() (in module

quickscope.server.bundle), 33
produce_run_script() (in module

quickscope.server.bundle), 33
produce_setup_script() (in module

quickscope.server.bundle), 33
produce_solution_directory() (in module

quickscope.server.bundle), 34

Q
quickscope

module, 36
quickscope.build

module, 36
quickscope.server

module, 36
quickscope.server.bundle

module, 32
quickscope.server.config

module, 34
quickscope.server.routes

module, 34
quickscope.server.run

module, 35
quickscope.server.templates

module, 35
quickscope.server.utils

module, 35
quickscope.wsgi

module, 36

41

Quickscope, Release 0.1.0

R
reconstruct() (in module quickscope.server.utils),

36
reformat_test_classes() (in module

quickscope.server.bundle), 34

T
TESTING (quickscope.server.config.Config attribute), 34

U
UPLOAD_FOLDER (quickscope.server.config.Config at-

tribute), 34
upload_locations() (in module

quickscope.server.routes), 34

42 Index

	Overview
	Key Features
	Build and Run
	Documentation
	Copyright & License

	Indices and tables
	Python Module Index
	Index

